Statistical moments of the random linear transport equation
نویسندگان
چکیده
This paper deals with a numerical scheme to approximate the mth moment of the solution of the one-dimensional random linear transport equation. The initial condition is assumed to be a random function and the transport velocity is a random variable. The scheme is based on local Riemann problem solutions and Godunov’s method. We show that the scheme is stable and consistent with an advective-diffusive equation. Numerical examples are added to illustrate our approach.
منابع مشابه
Extraction of model parameters for reactive solute transport
In the present study, tried to examine the reactive solute relationships for transport and degradation processes through the rockfill media. By applying the analytical solution of reactive transport, the 1st to 3rd theoretical temporal moments have been extracted then, by using two methods of curve fitting and temporal moment matching, the coefficients of dispersion and degradation have been ex...
متن کاملConcentration statistics for transport in random media.
We study the ensemble statistics of the particle density in a random medium whose mean transport dynamics describes a continuous time random walk. Starting from a Langevin equation for the particle motion in a single disorder realization, we derive evolution equations for the n-point moments of concentration by coarse graining and ensemble averaging the microscale transport problem. The governi...
متن کاملQUICKSELECT Revisited
We give an overview of the running time analysis of the random divide-and-conquer algorithm FIND or QUICKSELECT. The results concern moments, distribution of FIND’s running time, the limiting distribution, a stochastic bound and the key: a stochastic fixed point equation.
متن کاملThe Quantum Statistical Mechanical Theory of Transport Processes
A new derivation of the quantum Boltzmann transport equation for the Fermion system from the quantum time evolution equation for the wigner distribution function is presented. The method exhibits the origin of the time - irreversibility of the Boltzmann equation. In the present work, the spin dependent and indistinguishibility of particles are also considered.
متن کاملNumerical solution of second-order stochastic differential equations with Gaussian random parameters
In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 227 شماره
صفحات -
تاریخ انتشار 2008